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Software testing strategies are developed based on fault removal—deterministic and ran-
dom. Based on literature search, it is appears that this is the first research that has evaluated
these strategies. Deterministic fault removal is determined by the ranking of deviations of
the time of fault occurrence from statistical control chart upper limit. Random removal of
faults is selected by random number generation. Counterintuitively, random fault removal
proved to be the better strategy based on improvement in reliability metrics across a series
of tests. Contrariwise, deterministic fault removal was better when the cost effectiveness of
fault removal was considered. Fault and failure data from three diverse projects were used
to make the strategy assessment: NASA Space Shuttle flight software, Japanese University
application, and a database application.

I. Introduction

THERE is a need for greater emphasis on fault correction and removal modeling in developing software test
strategies and reliability models [1] (fault correction is the process of correcting the error that cased the fault and

fault removal means to delete or modify the faulty code). This need stems from the fact that the fault correction process
is vital to ensuring high quality software. If we only address failure prediction, strategy and reliability assessment
will be incomplete because it would not reflect the reliability of the software resulting from fault correction and
removal. The benefits to be achieved with fault correction and removal prediction are the following:

a) Determining whether reliability growth goals have been achieved by predicting number of faults corrected
and removed, fault correction rate, and fault correction time.

b) Providing stopping rules for testing as follows: 1) reliability metrics cannot be improved further as testing
progresses using various test strategies and 2) the fault correction rate has attained a maximum value.

c) Prioritizing fault removal based on statistical control charts to identify outlier values of fault counts.
In addition, using random selection of faults to prioritize fault removal. We model fault correction with a function

that has the same form as the failure detection function but with a random delay that accounts for fault correction
time. In practice, it would be possible to predict how much delay in the correction process could be tolerated in order
to meet reliability goals at a given time in test or operation [1].

Gokhale et al. have addressed the issue of delayed fault correction, when the delay is caused by the queuing of
faults to be removed or by the presence of latent faults that are difficult to remove [2]. They also model the possibility
of imperfect fault repair (i.e., a fault may not be entirely corrected or a new fault may be inserted during the repair
operation) [2].

They use a non-homogeneous Markov Chain to represent a non-homogeneous Poisson process to model failure
detection and fault correction. We agree that it is desirable to model new fault insertion when faults are corrected and
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removed but only if the model can be validated. We do not have access to this type of data in making our strategy
assessments.

A. Objectives
1) Using fault and failure data from the Space Shuttle flight software [3], Japanese University application [4],

and a database application [4], we are interested in assessing which of the following two software testing
and reliability methods would result in the maximum increase in reliability and cost effectiveness:
a) correcting and removing faults deterministically based on ranking of deviations from quality control

limits.
b) correcting and removing faults based on random selection of faults.

2) Determine whether there are differences in testing and reliability results based on software project: Space
Shuttle flight software, Japanese University application, and database application.

B. Contribution
Many testing strategies are based on coverage of the code of some sort—path, branch, loop, statement [5]. In

contrast, our contribution is the development of strategies that are based on fault removal. In our search of the
literature, we could not find other research that uses this strategy.

C. Software Projects and Failure Data Sets
The following data sets were used in our research:
Space Shuttle flight software: the software controls ascent, orbit, and decent of the vehicle. The system has 400 K

source lines of code that are continuously executed in simulators, astronaut training facilities, and in flight. Time to
failure is recorded in days.

Japanese University application: the software system is a compiler project in a university in Japan and the system
has about 1000 lines of code. The execution time is in seconds. The system is a PL/1 database application software
consisting of approximately 1,317,000 lines of code. The execution time is in hours.

We chose these data sets to provide breadth of applications, so that the analysis results would not be biased towards
a particular application domain. The failure data sets are shown in the Appendix. Except for the Shuttle, we do not
have severity information for these data. We use severity as one criterion in prioritizing fault removal for the Shuttle,
but are unable to include this factor in assessing test strategies for the other applications.

As can be seen in the Appendix, the three projects do not have identical failure characteristics. Therefore, the
sequence of fault removals designed to provide different testing strategies, cannot be identical. Thus, results will be
compared within each project. That is, compare the reliability achieved with deterministic fault removal vs. random
fault removal for the Shuttle. Then do the same for the other two projects.

II. Quality Control
The x̄-chart statistical quality control chart is used to monitor and control software reliability [6]. The x̄-chart

provides monitoring and control of variations around the mean difference in time of fault occurrence �t̄ , as a function
of test i, and resultant variations around the mean reliability R̄ and other reliability metrics. The difference in t is
used rather than t because the latter is a cumulative metric and would have no meaning on a control chart. The upper
control limit (UCL) for �t is computed as:

UCL = �t̄ + S (1)

where S is the standard deviation. Only one standard deviation is used because the distribution of t is highly skewed.
The quality control process is shown in Fig. 1. There are three things to note about how faults are identified for
removal. One is that both deterministic fault removal, based on the statistical control chart, and random fault removal
are used in Fig. 1. Second is that, of course, in actual testing it would not be feasible to reinsert faults into the code
after having removed them in order to initiate random fault removal, however, in assessing testing strategies we can
“reset” the code to its initial state of no faults removed in order to invoke random fault removal. Third, faults are
removed both deterministically and randomly by identifying the faults associated with the value of �t̄ that has been
selected either by the UCL or random number.
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Fig. 1 Software reliability control process.

In the following sections, we discuss a number of metrics—cost and reliability—that are used to assess the efficacy
of the test strategies.

III. Cost-Effectiveness Analysis
Cost effectiveness analysis can be used in situations like safety critical applications where the benefits, although

real, are difficult to quantify. For example, the reliability of the Shuttle flight software is obviously important for the
survival of the mission and the safety of the crew but putting a monetary value on the loss of the Shuttle and crew
like life insurance policies may not be appropriate [7]. In the case of software reliability, we will measure “cost” in
terms of the difference in test time t from test i to test i + 1 required to achieve a change in cumulative failures from
F(t)i to F(t)i+1. Then the cost effectiveness ratio is computed as:

CEi,i+1 = ti+1 − ti

F (t)i − F(t)i+1
for F(t)i − F(t)i+1 > 0 (2)

This evaluation is made for predicted cumulative failures because the objective is to assess the cost-effectiveness
of deterministic vs. random fault removal strategies, as fault removal progresses across a series of tests; F(t) will
readily reveal progress in fault removal. Note that the lower the CE, the better the fault removal strategy. The reason
is that with a low CE, we would achieve a large difference in fault removal for a small investment in difference in
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test time. Because there could be considerable variability in CE across test plans, the mean values are computed and
compared for the various strategies.

A. Computing the Rate of Return on Software Investment
Even with a safety critical system like the Shuttle, it is possible to apply the principles of engineering economics

to compute the rate of return of the investment in software based on the testing strategies we evaluate [8]. Each use of
contractor development and test resources involves an investment in making the software safe. We can compute the
values of these investments and discount them to the beginning of the development and test process for a software
release, like Shuttle release OI3. The rate of return is the value r that equates the timephased investments in test
strategies to the initial investment. If C is the initial investment and c(t) is the investment in test time t for a given
strategy, r is the rate that satisfies the following equation:

C = c(1)

(1 + r)1
+ · · · + c(t)

(1 + r)t
+ · · · + c(n)

(1 + r)n
(3)

The values of C and c(t) can be determined from the annual value of the contractor’s contract, as we show later.

IV. Reliability Metrics
Several metrics are used in assessing test strategies, including cumulative failures and reliability. For each metric,

both empirical and predictive metrics are computed. Cumulative failures are used in Eq. (2) rather than reliability
because the latter can have the value 1.0 in going from test i to test i + 1. Both empirical and predicted metrics
are computed in order to compute prediction error statistics that can be used to assess the accuracy of predictions.
Reliability metrics are computed by a C++ program we wrote that cannot be provided due to the paper space limitation.

Empirical cumulative failures are computed by Eq. (4) and empirical reliability by (5).

Fe =
n∑

i=1

xi (4)

where xi is the number of faults and failures occurring on test i.

Re = 1 −
(

xi∑n
i=1 xi

)
(5)

Reliability metrics predictions are made using the Schneidewind Software Reliability Model [9], a model
recommended in [10]. Other recommended models could also be used.

Cumulative failures are predicted by Eq. (6) and reliability is predicted by (7).

F(t) = α

β
[1 − e−β(t−s+1)] + Xs−1 −

[
α

β
[e−β(t−s+1) − e−β(t−s+2)]

]
(6)

R(t) = e (7)

where, in this case, t is the test or operational time for which the prediction is made, α is the initial failure rate, β is
the rate of change of failure rate, s is the first failure count interval that is used for estimating α and β, and Xs−1 is
the observed failure count in the range [1, s − 1].

Another reliability metric we use to assess test strategies is the mean number of failures in the interval t , t + 1:

m(t) =
(

α

β

)
[e−β(t−s+1) − e−β(t−s+2)] (8)
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V. Software Reliability Risk
It has been shown in [11] that the software reliability model parameter ratio PR = β/α is highly associated with

the risk of deploying Shuttle software. By risk we mean that the lower the ratio, the higher the probability that the
software will not meet expectations in operations. The reason for this result is that a low β means a low rate of change
of failure rate over test or operational time, and a high value of α means a high initial failure rate. Therefore, we use
this ratio as one of the factors in evaluating the effectiveness of testing strategies. A high ratio across a series of fault
removal strategies would imply decreasing risk of software deployment.

VI. Fault Correction Delay
Our approach to fault correction prediction is to relate it to failure prediction, introducing a delay dT, between

failure detection and the completion of fault correction (i.e., fault correction time). We assume that the rate of fault
correction is proportional to the rate of failure detection [12]. In other words, we assume that fault correction keeps up
with failure detection, except for the delay dT. If this assumption is not met in practice, the model will underestimate
the remaining faults in the code. Thus, the model provides a lower bound on remaining faults (i.e., the remaining faults
would be no less than the prediction). Using this assumption, the number of faults corrected at time T , C(T ), would
have the same form as the number of failures detected at time T , D(T ), but delayed by the interval dT. Originally,
we used a constant dT, which was estimated from the empirical data [12]. As pointed out by Xie and Zhao, this
assumption is too restrictive [13]. He suggests modeling the delay as an increasing function of test time. However,
we have not found this to be the case in the Shuttle data, where the fault correction time appears to be primarily a
function of the difficulty of the correction and independent of when the correction occurs.

It is well known that various human queue service times (e.g., supermarket checkout stands) can be approximated
with an exponential distribution [14], and can be modeled as a birth-death process, where in our case a birth is a
detected failure and a death is a corrected fault. Musa et al. uses this type of queuing model in his failure correction
process [15]. Therefore, in order to improve the prediction, we use a random variable for the delay dT. For the Shuttle,
this variable was found to be exponentially distributed with mean fault correction time 1/m, where m is the mean
fault correction rate in the interval dT. This distribution was confirmed for the Shuttle, using a sample of 85 fault
correction times and the Kolmogorov–Smirnof test, resulting in p = 0 [1]. In addition, Musa et al. found that failure
correction times were exponentially distributed for 178 failure corrections [15]. We have no information about the
correction time distribution for the Japanese University and database applications, but we assume the exponential
distribution holds in order to provide consistency of analysis across the three systems. We assume that fault correction
starts when failures are detected. This assumption is based on the need—for most faults—to keep fault correction and
removal current with failure detection. In some cases, a software developer may choose to postpone a non-critical
fault correction for several releases because it has obtained a waiver to not make the correction in the current release.
We do not attempt to model this human, case-by-case decision process. Our model is based on keeping the software
updated with corrections in the current release. In addition, as stated previously, our assessment of test strategies
does not include the possibility of introducing a fault when correcting one.

Because the possibility of variability in fault correction times, we emphasize prediction limits instead of expected
values. For a given mean fault correction rate m, the cumulative probability distribution F(dT) of the fault correction
delay dT is used to specify upper and lower limits of dT. These limits are dTU and dTL, corresponding to the upper
limit FU and lower limit FL. The concept is to bound the delay time, for example, at FU = 0.9 and FL = 0.1, and to
use these limits in the fault correction predictions. Thus, when making predictions, there would be high confidence that
actual values lie within the limits (e.g., probability of 0.80). The equation for F(dT) for the exponential distribution,
is given by (9):

F(dT) = 1 − exp(−(m)(dT)) (9)

Equation (9) is manipulated to produce Eq. (10), which is used to compute the limits of dT, applying the specified
limit values of F(dT):

dT = (− log(1 − F(dT)))/m (10)
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where m is estimated in Eq. (11), in which xi is the number of failures detected, corrected, and removed in test i,
assuming that the number of failures detected is equal to the number of faults in the code, �ti is the difference in
test time between test i and test i + 1, and N is the number of tests.

m =
∑N

i=1(xi/�ti)

N
(11)

VII. Fault Correction Rate
The fault correction rate is another useful measure of progress in fault correction and removal. If the rate reaches

a maximum, then the strategy corresponding to the maximum is the best strategy [1].

C(t) = α[exp(−[β(t − s + l − (log(1 − F(dT)))/m)])] (12)

As in the case of the fault correction delay, limits on F(dT) (e.g., 0.90 and 0.10) are applied to Eq. (12).

VIII. Proportion of Remaining Faults
The predicted proportion of remaining faults, P(i) for type of test i (e.g., deterministically remove two faults),

is given in Eq. (13), where Fe is the empirical cumulative failures and N(i) is the number of failures removed by
test i [1]:

P(i) = (Fe − N(i))/Fe (13)

IX. Prediction Error Analysis
Because the error in prediction could influence the evaluation of test strategies, we use the absolute value of the

mean relative error (MRE) between predicted and empirical values to make this assessment [5].

X. Results of Applying Test Strategies
In reporting on the results of applying the test strategies, we show the results in the following categories: statistical

quality control, predictions and error analysis, cost-effective analysis, risk assessment, rate of return of testing
investment, and fault correction rate. In addition to reporting results by topic, results are shown by project. The test
strategies are as follows: 1) do not remove faults; 2) based on the ranking, with respect to deviation of the difference
in fault occurrence time from the UCL, remove two, four, and five faults; and 3) randomly remove two, four, and
five faults.

A. Statistical Quality Control
1. NASA Space Shuttle

To set the stage for evaluating test strategies, in Fig. 2 we show how statistical quality control is used to monitor
quality and to identify the high priority faults for removal. Once these faults are removed, the process continues
in Fig. 1 with the evaluation of the software sans two faults. Iterative application of the control chart resulted in
identifying two, four, and five faults for removal. Then a selection process was applied to the tests to remove the
same number of faults randomly.

B. Predictions and Error Analysis
1. NASA Space Shuttle

Ideally, we prefer to have the best test strategy (e.g., highest predicted reliability) associated with the lowest
prediction error with respect to empirical reliability. Fortunately this does occur in Fig. 3 where the best strategy
and minimum error occur when four failures are removed randomly. A similar result emerges in Fig. 4 where the
best strategy and lowest error occur when five faults are removed randomly. Thus, for the Shuttle and reliability
predictions, random fault removal emerges as the desirable strategy.

Although Table 1 shows inconsistent results among the strategies for the various metrics, the key metrics are
reliability and cumulative failures, wherein random fault removal (bolded) is the best.
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Fig. 3 NASA Space Shuttle OI3 mean of predicted reliability R(t) vs. test strategy Ns.

2. Japanese University System
For this system, the best strategy based on predicted reliability is to remove five faults randomly, as shown in

Fig. 5. However, as in the case of the Shuttle, the best strategy is not the lowest error alternative. Because there is
not a significant difference in prediction errors among the strategies, it seems best to opt for the best test strategy.
A composite view of the results is shown in Table 2, where all of the reliability metrics are documented and the best
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Table 1 NASA Space Shuttle test strategy results (mean values)

Type of test F(t) R(t) Re C(t) L C(t) U m(t) m PR dTU dTL P(i)

Zero faults removed 31.4092 0.9606 0.9375 0.0760 0.0000 0.0468 0.2724 0.0396 8.4530 0.3868 1.0000
Two faults removed 25.8568 0.9704 0.9286 0.0506 0.0000 0.0333 0.3142 0.0518 7.3283 0.3353 0.8182
Four faults removed 23.9680 0.9720 0.9236 0.0441 0.0000 0.0309 0.3708 0.0576 6.2103 0.2842 0.6364
Five faults removed 23.9676 0.9717 0.9091 0.0428 0.0000 0.0309 0.4061 0.0576 5.6694 0.2594 0.5455
Two fault removed rand 29.4175 0.9607 0.9333 0.1449 0.0000 0.0463 0.1490 0.0396 15.4585 0.7073 0.8182
Four faults removed rand 20.1339 0.9771 0.9333 0.0780 0.0000 0.0249 0.1490 0.1042 15.4537 0.7071 0.6364
Five faults removed rand 19.1273 0.9767 0.9286 0.0428 0.0000 0.0253 0.1601 0.1042 14.3828 0.6581 0.5455

Definitions: F(t): cumulative failures, R(t): predicted reliability, Re: empirical reliability, C(t) L: lower limit of fault correction rate,
C(t) U: upper limit of fault correction Rate, m(t): failures in interval t , m: correction rate, PR: parameter ratio,
dTU: upper limit of fault correction delay, dTL: lower limit of fault correction delay, P(i): proportion of faults remaining.

values are bolded. The table indicates that there is no one test strategy that is superior for all metrics. For the key
metrics of predicted reliability and number of failures in a test interval, removing faults randomly, within the feasible
test budget, would be a reasonable strategy.

3. Database System
It was not possible to duplicate the same type of tests in this system as was the case for the Shuttle and the

Japanese system: remove two, four, and five faults deterministically, followed by removing the same number of
faults randomly. The reason is that the database system has faults in large clumps, as can be seen in Table A1 in the
Appendix. Therefore, removing one or two faults had a miniscule effect on the relisbility metrics. As a consequence,
we were forced to remove a large number of faults for some of the tests as can be seen in Table 3. The results are
decidedly mixed with no type of test being dominant. Thus, random tests would be in order to avoid the greater
expense of deterministic testing.

C. Cost-Effective Analysis
1. NASA Space Shuttle

Using the predicted cumulative failures F(t) for computing the cost-effectiveness ratio over the test strategies, we
plot the mean values of CE in Fig. 6 for the Shuttle. Interestingly, we observe the following: although the previous
analyses indicated that randomly removing faults was the best strategy, when viewed from a CE standpoint, removing
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Table 2 Japanese test strategy results (mean values)

Type of Test F(t) R(t) Re C(t) L C(t) U m(t) m PR dTU dTL P(i)

Zero faults removed 37.9144 0.9701 0.9524 0.0000 0.0638 0.0326 0.2139 0.0411 10.7631 0.4925 1.0000
Two faults removed 35.2651 0.9764 0.9558 0.0000 0.1568 0.0251 0.1162 0.0444 19.8129 0.9066 0.9259
Four faults removed 33.2861 0.9780 0.9412 0.0000 0.1154 0.0232 0.1267 0.0444 18.1718 0.8315 0.8519
Five faults removed 33.3730 0.9765 0.9375 0.0000 0.1043 0.0248 0.1332 0.0442 17.2910 0.7912 0.8148
Two faults removed rand 35.9289 0.9710 0.9500 0.0000 0.0632 0.0314 0.2076 0.0411 11.0926 0.5076 0.9259
Four faults removed rand 33.2763 0.9773 0.9444 0.0000 0.0484 0.0241 0.2093 0.0444 11.0033 0.5035 0.8519
Five faults removed rand 32.3559 0.9840 0.9412 0.0000 0.0352 0.0169 0.2012 0.0444 11.4464 0.5238 0.8148

Definitions: F(t): cumulative failures, R(t): predicted reliability, Re: empirical reliability, C(t) L: lower limit of fault correction rate,
C(t) U: upper limit of fault correction Rate, m(t): failures in interval t , m: correction rate, PR: parameter ratio,
dTU: upper limit of fault correction delay, dTL: lower limit of fault correction delay, P(i): proportion of faults remaining.

Table 3 Database aplication test strategy results (mean values)

Type of Test F(t) R(t) Re C(t) L C(t) U m(t) m PR dTU dTL P(i)

Zero faults removed 308.4563 0.2291 0.9474 7.1668 7.9244 6.7230 8.4671 0.0100 0.2719 0.0124 1.0000
Two faults removed 306.4563 0.2291 0.9474 7.1573 7.8212 6.7537 8.4407 0.0100 0.2728 0.0125 0.9878
Four faults removed 306.4563 0.2291 0.9474 7.1673 7.9304 6.7230 8.4143 0.0100 0.2737 0.0125 0.9817
36 faults removed 278.7308 0.2906 0.9444 6.5028 7.2173 6.0976 8.1810 0.0100 0.2815 0.0129 0.9024
38 faults removed

randomly
266.5204 0.3754 0.9412 10.5580 11.7472 5.9425 8.0026 0.0078 0.2877 0.0132 0.8841

Definitions: F(t): cumulative failures, R(t): predicted reliability, Re: empirical reliability, C(t) L: lower limit of fault correction rate,
C(t) U: upper limit of fault correction Rate, m(t): failures in interval t, m: correction rate, PR: parameter ratio,
dTU: upper limit of fault correction delay, dTL: lower limit of fault correction delay, P(i): proportion of faults remaining.
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two faults deterministically is the best plan. Based on this finding, the development organization should decide which
is more important for a test strategy: high reliability (i.e., randomly removing faults) or low CE (i.e., removing faults
deterministically).

2. Japanese University System
Similar to the finding in Fig. 6 for the Shuttle, Fig. 7 for the Japanese University System, shows that removing

faults deterministically is the most cost effective strategy. Again, an organization needs to make a choice between
reliability and cost effectiveness.

3. Database Application
There is insufficient change in cumulative failures across test strategies for this application to develop a trace of

CE. However, we did find that the mean CE does progress from 0.1103, when transitioning from four faults removed
deterministically to 36 faults removed in this manner, to a mean of 0.0299 when changing from 36 faults removed
deterministically to 38 faults removed randomly. Thus, this result is contrary to the previous findings for the other
two projects. However, given the small sample size, we do not consider this result significant.

D. Risk Assessment
1. NASA Space Shuttle and Japanese University System

Figure 8 shows that for both the Shuttle and the Japanese system, minimum risk is achieved with randomly
removing five faults, albeit this result is more pronounced for the Shuttle. This adds further evidence that, from a
reliability and risk standpoint, the preponderance of evidence is on the side of removing faults randomly. However, if
the development organization is primarily interested in cost-effectiveness, its choice is to remove faults determinis-
tically (Figs 5 and 7). Of course, the specific number of faults to remove would vary by project and type of software.
In addition, in view of the greater effort involved in developing control charts to identify candidates for removal,
random selection of faults to remove is a reasonable policy.
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E. Rate of Return of Testing Investment
1. NASA Space Shuttle

The annual software development contract for the Shuttle flight software is C = $ 35 M. On a daily basis, realizing
that the Shuttle development and testing process is continuous, this amounts to c(t) = $ 95,890 (365 days per year).
Therefore, the value of t days of testing is c(t)$ 95,890 t . Using Eq. (3), we computed a rate of return r = 13.90%
when no faults have been removed. This is a very good rate of return considering the return available in money
markets. Then we computed r for the various testing strategies, and interestingly there was no change in r except
for r = 13.89% when two faults were removed randomly. This result implies that for Shuttle release OI3 return on
investment in testing is independent of the type of test.

F. Fault Correction Rate
1. NASA Space Shuttle, Japanese University System, and Database Application

The best strategies with respect to fault correction rate limits are where the plots are maximum in Figs. 9 and 10.
This occurs at removing two faults randomly for the Shuttle, removing two faults deterministically for the Japanese
System, and removing two faults randomly for the database application. Again, although the evidence is obviously
not overwhelming in the case of random fault removal, the weight of the evidence suggests that an organization
would not go wrong by using this test strategy.

G. Conclusions
We used three sets of fault data comprising a range of applications and modeled several test strategies for each

application. Overall, random removal of faults proved to be the best strategy in terms of resultant reliability metrics.
This result is reinforced by the fact that random fault removal is less expensive than deterministic removal. In addition,
this result is consistent across the three applications.

Another conclusion is that for our test assessment strategy to be effective, fault removal must be sufficiently
large to produce significant differences in the reliability metrics across test strategies. Initially, this was not the case
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in dealing with the database application. In retrospect, it would have been better to remove faults based on equal
proportion of faults removed across applications.

Because the MREs for reliability predictions were the lowest for any of the reliability metrics, we have greater
confidence in test strategies identified by reliability than for other metrics.
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Appendix

Table A1 Failure data sets

Shuttle Data base application Japanese University

Time to failure Cumulative Execution time Cumulative Execution time Cumulative
(days) failure count (hours) failure count (seconds) failure count

29 2 2.45 15 36 1
36 2 4.90 44 40 2
91 4 6.86 66 45 3
92 6 7.84 103 52 4
120 6 9.52 105 54 5
127 6 12.89 110 102 6
246 6 17.10 146 108 8
289 7 20.47 175 172 9
291 7 21.43 179 197 10
293 7 23.35 206 200 11
311 7 26.23 223 242 12
364 8 27.67 255 326 13
830 8 30.93 276 491 14
1078 9 34.77 298 514 19
2626 10 38.61 304 537 20
4096 11 40.91 311 580 21

42.67 320 677 22
44.66 325 678 24
47.65 328 732 25

779 26
794 27
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